- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0000000002000000
- More
- Availability
-
20
- Author / Contributor
- Filter by Author / Creator
-
-
Sun, Catherine (2)
-
Allen, Maximilian L. (1)
-
Alston, Jesse M. (1)
-
Alvarenga, Guilherme C. (1)
-
Amir, Zachary (1)
-
Anhalt-Depies, Christine (1)
-
Appel, Cara (1)
-
Arroyo-Arce, Stephanny (1)
-
Balme, Guy (1)
-
Banda, Kachama (1)
-
Banda, Kambwiri (1)
-
Bar-Massada, Avi (1)
-
Barcelos, Daniele (1)
-
Barr, Evan (1)
-
Barthelmess, Erika L. (1)
-
Baruzzi, Carolina (1)
-
Basak, Sayantani M. (1)
-
Becker, Matthew_S (1)
-
Beenaerts, Natalie (1)
-
Beirne, Christopher (1)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Large carnivores such as the lion are declining across Africa, in part because their large herbivore prey is declining. There is consensus that increased protection from prey depletion will be necessary to reverse the decline of lion populations, but few studies have tested whether increased protection is sufficient to reverse the decline, particularly in the large, open ecosystems where most lions remain. Here, we used an integrated population model to test whether lion demography and population dynamics were measurably improved by increased protection. We used data from monitoring of 358 individuals from 2013 to 2021 in the Greater Kafue Ecosystem, where prior research showed that lions were strongly limited by prey depletion, but protection increased in several well‐defined areas beginning in 2018. In some other areas, protection decreased. In areas with high protection, lion fecundity was 29% higher, and mean annual apparent survival (φ) was 8.3% higher (with a minimum difference of 6.0% for prime‐aged adult females and a maximum difference of 11.9% for sub‐adult males). These demographic benefits combined to produce likely population growth in areas with high protection ( = 1.085, 90% CI = 0.97, 1.21), despite likely population decline in areas with low protection ( = 0.970, 90% CI = 0.88, 1.07). For the ecosystem as a whole, population size remained relatively constant at a moderate density of 3.74 (±0.49 SD) to 4.13 (±0.52 SD) lions/100 km2. With the growth observed in areas with high protection, the expected doubling time was 10 years. Despite this, recovery at the scale of the entire ecosystem is likely to be slow without increased protection; the current growth rate would require 50 years to double. Our results demonstrate that increased protection is likely to improve the reproduction and population growth rate of lions at a large scale within an unfenced ecosystem that has been greatly affected by poaching.more » « less
-
Burton, A. Cole; Beirne, Christopher; Gaynor, Kaitlyn M.; Sun, Catherine; Granados, Alys; Allen, Maximilian L.; Alston, Jesse M.; Alvarenga, Guilherme C.; Calderón, Francisco Samuel; Amir, Zachary; et al (, Nature Ecology & Evolution)Abstract Wildlife must adapt to human presence to survive in the Anthropocene, so it is critical to understand species responses to humans in different contexts. We used camera trapping as a lens to view mammal responses to changes in human activity during the COVID-19 pandemic. Across 163 species sampled in 102 projects around the world, changes in the amount and timing of animal activity varied widely. Under higher human activity, mammals were less active in undeveloped areas but unexpectedly more active in developed areas while exhibiting greater nocturnality. Carnivores were most sensitive, showing the strongest decreases in activity and greatest increases in nocturnality. Wildlife managers must consider how habituation and uneven sensitivity across species may cause fundamental differences in human–wildlife interactions along gradients of human influence.more » « less
An official website of the United States government
